
ON TRE ~EO~TRIC STRUC~~ OF AN ELE~NTARY CHARGE 
PMM Vol. 34, Np3, 1970, pp. 571-575 

Iu. A. BUEVICH 
(Moscow) 

(Received January 13, 1970) 

The solution of the gravitational equations for an arbitrary spherically symmetric system 

of bodies defining the gravitational and electromagnetic fields outside this system is 
written out. The difficulties occasioned by the nonvariance of the energy-momentum 

of an elementary charge under transformations of the Lorentz group and by the divergence 

of the energy of the field generated by the charge are eliminated within the framework 
of classicaX field theory. It is shown that the entire mass of the charge is of field origin 
and that the charge itself can be interpreted as a singularity of the space-time metric. 

1. The gravitational field of a spherically symmetric charged system is described by 
the familiar Reissner-Nordstrom solution. Let us write out this solution in a form conve- 

niently suited to our subsequent discussion. Introducing the spherical space coordinates 
r, 9, cp we can express the square of an interval in four-dimensional space time as 

ds” = e’(dz”)a - eXdra - ra (d0a f ain?9d@) 

where x0 = ct, c is the velocity of light, and v , A are some functions of t, r. 
The corresponding covariant components of the metric tensor are 

grt = eh, ga = rp, g, = Ain*@, go0 = - ey 

(i.1) 

g 11 = e -I , gss = r-s, g9s = r-s sin-s9, go0 = - e-’ (1.2) 

The tensor of the free eiec~oma~etic field iu the presence of spherical symmetry 

has just two nonzero components, 
FlO = - For = E 

where E is the intensity of the electrostatic field. We infer from this that the only com- 
ponents of the energy-momentum tensor are 

i 
TOO =: T1’ = - 8n C -V-k,ljB, T22 = Tao= & e-‘-“fl (1.3) 

According to the Reissner-Nordstrom solution the quantities v, b and the electrostatic 

field intensity E occurring in relations (l.l)-(1.3) can be written in the form 

(1.4) 

e*(+)“*f 
Here m is the total mass and e the total electrical charge (which can be either posi- 

tive or negative). The quantity k in (1.4) is the gravitational constant. 

From (1.4) we infer that the metric is Galilean not only at infinite distances from the 
system of bodies and charges generating the field, but also at r = rot where 

a c= 
ro=zp=m 0.5) 

(we must, of course, bear in mind the fact that all of the above relations hold outside the 
indicated system only). 

If b2 - n > 0 (km2 > e2), the metric has a singularity at r = r, and r z-7 r?, where 
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r,,a = p.* (P - a?” (i.6) 

represent the “gravitational radii” of the system, and where the frame of reference with 
the indicated coordinates turns outto be unrealizable in the range r2 < r < r, , As we 

know, fixes in this range can be taken only by bodies moving in a certain way. The gra- 

vitational radii vanish for 0s - a < 0. 
In the range r > rr the physical radial distance dp corresponding to the change dr 

in the coordinate r and the physical time interval dz corresponding to dl satisfy the 

relations 
dp = 

rdr 

(F- 2pr + a)“Z 
>dr, a% = f-T++ “‘dt<dt 

> 
(I.7) 

The physical distance along any “circle” r = eonst coincides with the distance com- 
puted formally from (1.1). 

2. Let us use the above relations to investigate the structure of an elementary source 
of an electromagnetic field. We shall regard the field of such a source defined by the 

relations of Sect.1 as some inclusion in an infinite pseudo-Euclidean space with a Gali- 
lean metric. Such an approach ensures that the field and the elementary source itself 
satisfy all the requirements imposed by the special theory of relativity. Specifically, 

the elementary charge considered as a material particle must of necessity be a point 
charge fl]. Moreover, its total energy-momentum vector must be a true four-dimensional 
vector invariant under linear transformations of the coordinates, and particularly under 

Lorentz transofmation in the unbounded ~eudo-Euclidean space introduced above. In 
addition, the energy of the elementary charge must be finite and its momentum in the 

coordinate system in question must be equal to zero. These requirements were the basis 

of numerous attempts to construct a theory of field or nonfield mass of an elementary 
charge and a theory of the electromagnetic structure of elementary particles r2]. We 

note that the whole of the discussion to follow lies within the bounds of classical field 

theory, and that the possible quantum properties of the elementary charge are disregarded. 
We begin by converting to Cartesian coordinates, in which the components of the met- 

ric tensor can be written in accordance with (1.2) and (1.4) in the form 

f2.i) 

A(r)= -$?--.F$-)(i--f++) , na=> ( 
-1 

d 

Here and below the Greek-letter subscripts assume the values 1, 2, 3 and the Roman- 

letter subscripts the values 0. I, B, 3. 
The four-dimensional energy-momentum vector for the field in the volume Sa bounded 

by the surface ;C can be written in the form 

pi=i c n (- g) (~0’ -t_ toi) dQ = s rioadZ,. g = Wlq,U (2.2) 

Here 2”” is the energy- momentum tensor of matter as defined by (1.3) ; tik is the 
energy-morrtentum pseudotensor of the gravitational field ; dX.are elements of the sur- 
face I: ; and the quantities riki antisymmetric over the indices I and k are defined by 
the space-time metric 

*.fkl _= cil _L if-g) ~ikgrm _ gi~g~~~l 
i6nk @’ 
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Making use of (2.1) and carrying out the appropriate calculations, we obtain the expres- 
sions 

Tooo = c3 A (r) a+= 
8nk--’ 

p8 = o 

r? 

rPPadX A f a a=Tkk 137 
B (r) _ c (rJ f$F I _ 2A (r;n (4 + 

-I- 4A (t) C (r) 9) nadZ, - .__k ’ (r) 1’ r’ A (r)l nedZp (2.3) 

B (r) = 1 - +++. C(r)=(+-+)(i_$.++) 

(there is no summation over 6 in the third equation of (2.3)). 
From (2.2) and (2.3) we obtain expressions for the energy and momentum of the field 

occupying the region (r, 00) of space, 

(i-F+9 =: 

+ $$)-I (2.4) 

Pa (r) E 0 

in deriving which we made use of expressions (1.4) for a and p. 

Hence, in accordance with the requirements of the special theory of relativity the 
momentum of an elementary charge in the coordinate system under consideration is in 

fact equal to zero. 
The relativistic covariance of an elementary charge and its field, i. e. the invariance 

of Pi under Lorentz transformation, depends on the fulfillment of the necessary and suffi- 
cient conditions 

f c d (- g) (TBB + tss) d!J= $ @‘=d2, = 0 
c 

(2.5) 

for all p. This is the significance of Laue’s familiar theorem @]. By virtue of spherical 

symmetry we need merely require that (2.5) hold for a single fi, e.g. for fl = i. Conver- 
ting to spherical coordinates, 

n”dZ, = AinedtpdO, nldZl = r%inS&os’ cpdcpd0 

and integrating, we obtain the following expression for the integral over the sphere r = 

= const; 

s 
r=const 

(2.6) 

From this we see that if all real space corresponds to the range (0, w) of variation 
of the coordinate r, then the Laue theorem is not fulfilled explicitly. Let us suppose 

therefore that all space corresponds to the range rB < r < 00, so that only the values 
of r from this range have physical meaning; moreover, let us define re in such a way 

as to ensure fulfillment of the criteria of relativistic covariance of an elementary charge 

(Eqs. (2.5)). Making use of (~2.6) and recalling that all space is bounded by the surface 
I6 consisting of an infinitely distant sphere and the sphere r = r,, we obtain 

I?% 
r =+j-=-=ro 

c 2mcs (2.7) 
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According to (2.4) the energy concentrated in all space is then diven by 

E = nK2 (‘2.8) 

This implies, among other things, that the entire mass of an elementary charge is of 
purely field origin. 

Thus, according tQthe theory just developed a charge e is a singularity of the space- 

time metric such that the time at this singularity passes in the same way as at a distance 
from it, and such that the length of the elementary circle contracted to the “point” r=ro 

is equal to 2nroz (the area of the corresponding elementary sphere is equal to 4n$). 

The distance from this point to some other point for which the radial coordinate has 
some value r is readily obtainable from (1.7) and is of the form 

rdt P(r)=\(r2_Zpr+a)‘i= \ rdr (2.9) 

pa r* [r?+ a (i - r/ro)j” 
This enables us to express the electrostatic field as 

&_!L_ 4mV 

E (P) Pz ’ E Ip=o = -p- (2.10) 

Thus, the field intensity at small distances deviates from Coulomb’s law ; the quantity 

E(P), which can be readily determined by comparing (2.10) with (1.4) and applying 
(~2.9)~ plays the role of the permittivity of vacuum (e(p) + 1, p - 00, e(p) -* 00. P --) 0). 

We note that ro > rl (this is a readily demonstrable consequence of (1.5) and (1.6) >t 
i.e. that the difficulties occasioned by the appearance of gravitational radii do not 

arise at all in the theory. The singularity of the metric with which we identify an ele- 
mentary charge is a point singularity. This means, in accordance with the requirements 

of the special theory of relativity. that the “extent” of a charge can be thought of only 
as the extent of the field which it produces. 

It is of interest to calculate separately the energy of the electromagnetic field. The 

mass m’ produced by this field alone is given by 

m'= c &IO”+- s (-g) TOW2 
P 

Recalling that by virtue of (1.2)‘ (1.3), (1.4), 

we obtain 

T”O =gOo Too -_ & i -2E++j-l 

t?? 1 3X m’= -- i-%22 
P ‘Ir * VS - -arc tg 2 2 ‘fr 

7 
zs 

2E a (1-x) 2z(i -z) 

=m(i +2/3x2)>m, x=pdf* (2.42) 

The quantity x can be Lonsidered small (in the case of an electron x _ 10-22). Expres- 
sion (2.12) then implies t.lat m’ > m, i.e. that the energy of the gravitational field pro- 
duced by the electromagnetic field of an elementary charge in a sense depletes the ener- 

gy of the latter. This allows us formally to assign negative mass and energy to the gra- 
vitational field generated by a charge. It is as though some part of the energy were 
“expended” on the appearance of the indicated singularity of the metric and on the devi- 
ation from pseudo-Euclidean character in its vicinity. We not that despite the relative 
weakness of the gravitational field of an elementary charge, allbwance for this field is 
absolutely necessary to ensure fulfillment of the requirements stated at the beginning of 
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Sect. 2. 

We have made use of the gravitational field pseudotensor in the form proposed by Fok. 
Landau and Lifshits ; the introduction of this pseudot&nsor is tantamount to assuming the 
impossibility of localization of gravitational energy in space. There have been many 
studies (e. g. see [3]) in which the iocalization of this energy is ensured by a certain 

redefinition of the indicated pseudotensor. Without going into detail, we merely note 

that investigation of the integral momentum and integral energy is in no way hindered 
by the use of the above pseudotensor in preference to another, provided the coordinate 
system employed is Galilean at infinity (as is the case in the present study: see (2.1)). 

We note that the value of ro in (1.5) and (2.7) coincides with the elementary charged 

radius given by the Bopp-Podolsky theory (r. z 1.41 x iO-13 cm for an electron) and 
agrees in order of magnitude with the effective radii obtainable in other well-known 

theories of charge structure (a survey of these theories appears in PI). However, the 
theory developed here is quite natural in the sense that it is free of arbitrariness in the 

choice of the form of the electromagnetic field, Lagrangian, or, which is almost 
the same thing, in the choice of the form of the permittivity function (or operator) . 
Moreover. by virtue (2.10) the form of this function turns out to be quite definite. It is 

not difficult to show that this function E(P) can be used as a basis for constructing a non- 
linear electrodynamics analogous in meaning to the Born-Infeld and Schradinger theo- 

ries. This can be done simply by considering the charge in ordinary plane space, but 

replacing Coulomb’s law by (2.10) ; the quantity .E I,,, in (2.10) plays the role of the 
“maximum intensity” E. in the indicated theories. 

We note in conclusion that for a = 0 conditions (2.5). which follow from the Laue 
theorem, cannot be fulfilled for any r# in the range (- 00, CO). This implies that a rela- 

tivistically covariant “elementary” (i. e. nonextended) material mass cannot exist. The 

same conclusion was arrived in a somewhat different way by Staniukovich 141, who devel- 
oped the original idea of Landau. 
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